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1.0 INTRODUCTION

As a possible aid to improving VLF/LF modeling capability associated with

trailing-wire antennas, this study examines a dipole segmentation process for

rather quickly estimating the radiation resistance of thin antennas of

arbitrary elevation and orientation over a perfectly conducting ground. For

thin antennas, the current distribution is sinusoidal, and that distribution

serves as the basis for sample calculations presented in this report. Utility

of the method for estimating the radiation resistance of airborne trailing-

wire systems depends upon the validity of the assumed sinusoidal current

distribution. Deviations from the assumed distribution arise, in part, from

the finite conductivity of the wire and ground as well as from the nonzero

thickness of the antenna. A computer program that allows for such effects is

the Numerical Electromagnetic Code (NEC), and additional studies using this

code should be made to define clearly the limitations of the present

devel opment.

In the following section, the formula for radiated power, based on dipole

segmentation, is developed by integrating the Poynting flux generated by the

system of radiators over a hemisphere. Although the emf method2 ,3,4 may offer

advantages (e.g., the method determines the complex impedance) over the direct

Poynting flux integration, no attempt has been made to use that method in the

present development. In Section 3, numerical results are given for half-wave

linear antennas of varying inclination and for half-wave spiral type antennas.
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2.0 DEVELOPMENT OF THE SEGMENTATION FORMULA

Figure 1 shows the conf igurati on for the nth di pol e of current

moment 4 n . The dipole is located at (x~ n yn z n) with orientation 0 and

Yrelative to the x and z axes, respectively. The field point at P has the

spherical coordinates (R, 0, 0). A time-dependence exp(iwt) is assumed where

i =VCT1, w is the circular frequency, and t the time. The point P is assumned

to be in the far field so that the dipole field components in

the 0, 0 directions are as follows:5

1) Field components generated by z component of dipole.

E0 -A g(R)cosy sinelexp(PA + R exp(i( r)1 1
n n n v n

H4  B B(Rcssi nelexp(i, ) + R exp(i(r)] (2)

ii) Field components generated by x component of dipole.

E0 A g(R)siny cos cosgcos4)exp(i(d) R exp(i(r) (3)n n n n v n

H nBg(R)sinyco4)cosco4)iexpMiJg R Rexp(iP4 ](4

0 nAg(R)sinyncos4)nsin4){exp(i() + RHex~~ n

He -B n g(R)sin n coso nsi no4exp( i(d) n RHe( n4) (b)

iii) Field components generated by y component of dipole.

2



H = A inn~einlx(i(d - R exp( i r)I (8)

E = A g(R ) si ny sin cos44exPHi4d) + R exp(b4r)] (9)

He = B g(R)siny sin cos4Kexp(i4) + RH exp (,r)J (10)

* where

g(R) = e-ikR (11)
* R

A- OnkM 
(12)

n
4 n

0

B~ - nM (13)

Id k(sinecosU% + sinesin~yn + cosoin (14)

* r k( snOs Ox + sin~sinqy - COsOZ) (15)
"n nnn

- k =free space wave number

SRv Er-esnel reflection coefficient for TM polarization

RH Fresnel reflection coefficient for TE polarizdtrion.



For the special case of a perfectly conducting ground, Rv = I and RH = -I.

The total field components then become:

E9 = -A g(R) g( e,)ex p(i d  (()exp(ir))

H* = Bng(R)[g1n(O,f)exp(id) + g2n(9,4)exp(ir)] (17)

E = -Ang(R)g3 n(E,4)[exp(i4) - exp(icr)] (18)

He -B g(R)g (O,)[exp(i(d) exp(ipr)] (19)n 9 9 3nPL n n

where

gln 0) = cosyn sinO - sinyncosocos( -¢n) (20)

gn0,) = cosYnsi nO + si ny cosEcos( -n) (21)

3n(  = sinYnsin(O- n) (22)

The time average Poynting flux in the radial direction is

I Re[EBH _E H] (23)
2 =  2 H

where Re stands for the real part and the * for the complex conjugate.

Therefore,

FIR = - 2 g(R)g (R)Re{ Z Anbmlexp~i(sn-¢m)glngim + g3ng3m)
n,m

4



d r

+ exp i(. - F))(gj g2  - g9 )

+ expi(~n IG'))92ng1m - g3flg3m)}(4

*Now the phase terms are given by:

r = r sinecos( - )+zcose (25)
nm nni nm) Znr

r- ,r = r sin~cos(o - cD ) - Z- Cos@ (26)
*n 4fm nin nin rnm

d~ - r=r sincos( - %m ) + z+COSE) (27)

r- r sinfcos( - (1 ) - z+cose (28)
* n nin nm n

* where

rn= k(x~ n x i)2 + ( y )/ (29)

z * k(z n- z )d (3u)

z +i= z+z (31)
nn in

=u tanlYn Ym (32)

5



2 Al so,

glgm- CosyncosyWsin e + 2 SfnSliCOCS(lfn)m

+ 1 sinyn sinymcos2 ecos(ZO0- (33

2 1.sn s.co 2 Oo(
92 m=CosyncosymnSIf ne + 2 SilnifinO ncs4- 4If

+ cosy nsiny si necosecos( m~ + cosymsinYns inecosocos( "n)

+ 2 ~l~~(4

91n22 1 sinCO~n~f 2SfYns iflncos 2 cos( -~

+ cosy siny. si n~cos~cos( -4 )-cosymsi n infcoscos(s.- 1

- siny sinymcos Ocos(20-~ O-on) (

2 1. 2
92gm= cosyncosyWnsir 0 - 2 snlfyns C 3 inmo cos(4n-4m)

+ cosymsin nsincosecos(4-4 )-cosyn sinymsi n~cos~cos( M)

nn m i

93ng3m siny siny cos(O -0 sin -in 2o(- - (37)

6
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The time-averaged power, Pw, radiated by the system of dipoles is

obtained by integrating the radial component of the time-averaged Poynting

vector over the surface of a large hemisphere. Thus,

Pw = Lim [R2 fsindO TRd ] (38)
R o o

The integral over may be evaluated by using the well-known expansion6

e iCosP3= nV n(k)einp (39)
n= - n

where Jn is the Bessel tunction of the first kind of order n. In effect, only

terms with n=O,t1 and t2 survive the c integration. The result after

integration over 4 is

Pw = -2n Z AnBm f sinedex
n,m 0

1. I

{[cosyncosym + 2 si nYnsiny mcos( n-4m)icos(znm cosO)d o( rnm sinO)

+[cosynCosym - 1 sin(Yn SinYmc°S(n-) c O s ( z+ ce) d O ( r n s i ne)

i ,

, + [-coSYncoSYm+ 2 i nynsi nymCOs( n-m ) ] c S Ocos(z nmc os O)J o (r n msi nO)
I (rnm~inO

-fo~cYnOS y+ si nyn~ si nly1 cos( 0n -4 m) ilcOs2 cos( ZnmCoOe)J o ~s O

n n nm

+cosy nsi ny Insi nOcoscos( ui- 'rn )sin(z nincoO)JW 1 (r nmS snO)

7



* ~~C0SYnsilymsilCSn sc~m.) )sin(z~mcose)ji (r ~ine)-CO Y~in~~in o s oos (onm- on) s n ZmOs~ nmSi

+cos Ymsi nynsi ncosocos(%m- n)si n(znmcoso)j 1 (rnmsi no)

+ CosYmsinYnsinecosecos( --) )sin(z+ nCOSO) 2(r sinO)

nm nm

- 2 sinynsinYmsin 2 Ocos(2n -cos)J (rsin)(

The integral over theta in equation (40) may be evaluated using the following

three formulas:

f2 (sinx) U1 lcos( Pcosx)d u(lsinx)dx=av(cr+o±)-I/2u-i/4j v+1/2 ((a2+o?)1/2 (41)
* 0

f2 (sinx) L Icosxsinlcosx)j (asinx)dx=aUa 2+ 2 )-/ 2 u-3 / 4 i ((a 2+p23)i/ 2 )
o V 2+3/2

(4 )

*U+1 2 i IZ-/ /f (sinx) cos xcos(Ocosx)J (asinx)dx= ( Ja(a + 2 -/2U 3 4 [j u+3/+(+2 )I0

_ (a+ )-i/2J u+5/2 ( a +2 )1/2 )] (43)

Equation (41) is from Gradshteyn and Ryzhik 7, and equations (42) and (43) are

easily obtained from equation (41). To evaluate the theta integrals in

equation (40), equation (41) is used with u = 0,2, equation (42) is used

with u= 1, and equation (43) is used with u o. With the understanding that



the current moment Rn is to be expressed in terms of the rms current

associated with the nth element, the expression for the radiated power after

carrying out the theta integrations becomes

Pw = 30k 2 MnMm
n,m

"1.-

{~cosy cosym + -siny siny cos( - )(W- )/2 (-
n 2 YnS in n-in nm 1 1/2 (nm

r ~ 1.

+ [cosY - 2 sinYnSnYnco sln-%)]Wnm+ Wi2 nm)

+[-Cosy cosy + in sinycos( - - F 3/2[ nW-+-°SnC°~ 2 siYn~i~CS n- m) 1( nm 3/2 nm)

_(Zm2 (W - 1 W
nm ni) - j 5 /2 (  nm )

n n nm

-ics~cs 1  +1 - )j+ -*3 / 2 F(,

-[c°~nCS~m+ 2sinnsi~mCS( -Cm) ]( nm )  'j3/2( nm)

(Z+ )2 (W+ I (-Znm) nm -lj5/2 nm

* +[cs I inos(-p ) + osy siny cos( ~ )c c nsinYm ( nm- m)Znm +  cS m rin nC S( ri rnn )znm

+ 1 sin y nSiny C °S(2 n - n O )r n ]r nm ' ,) 5 / j 2 ( ° )

[-cosysinymcos( - )z+ + cosymsiny cos( n n )Z+

sinn siny-cos( - rn)r ]rn 1( 
+ )  (F + ) 1 (44)

where

9



((z* )2 + r /2(45)

j(x) = -J(x) (46)

2 sinx 2 cosx sinx
Ji/2 (x) A - J3/2 (x) = -C- Sx + 5 )

(47)

5/2  = R J3 /2
( )  J/1 2(x)

Equation (44) gives the power radiated from an assembly of dipoles. This

section will be concluded by checking the limiting case of Equation (44) for a

,. single dipole over a perfectly conducting plane. Additional checks are given

in the following section.

For a single dipole, the dipole subscripts may be omitted. Observe first

*- that r = 0 so that the first four terms of Equation (44) are the only non-

vanishing terms. Observe also that ur = z- 0 and that w + = z+ = 2kz, where

z is the height of the dipole above ground. Also, the following relationships

apply:

x-i/2j= -sinx (48)

x-3/2 j3/ 2(x) = (.c°osx + sinx)- _ 1 (49)x x 3

x-5/2 j (x) = (-1 + L sinx 3cosx (50)
5/2 2  3  4

110........................................... o-..
.. . . . .. . . . . . . . . . . . . . . . . . .
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By using Equations (47) through (50), Equation (44) for the single-dipole case

is reduced to:

Pw = 2Uk2 M 2f(z+,y)

where

+ + +
f(z+ ,y) = [I + __ (sinz -z cosz )]cos 2 y

(z+)

+ [I + 3 ((l_(z+)2)sinz + -z'cosz+)]sin2 y (51)
2(z+) 

3

Limiting values of f(z+,y) are:

f(z+,y) + i .(52)

f(z + , Y) - 2cos 2 y (53)
z +

In VLF/LF applications, airborne trailing-wire systems are often modeled

by a single-point dipole. An often-used input to the NOSC mode-summing

programs (e.g., reference 8) is the power radiated by a vertically oriented

point dipole immediately above a perfectly conducting ground plane. Thus, if

a point dipole at height z is used to model a trailing-wire system radiating a

known power Pz' then the power, P, to be used in the waveguide program, is

P/Pz = /f(z+'Y) (54)

i .. . . . . . ... .



However, it should still be realized that the point-dipole approximation is a

questionable simplification, and that the preferred method is to model the

antenna by a series of dipoles9 . This requires, for a given radiated power,

knowledge of the antenna current, and the present method is suggested as a

possible way of expeditiously estimating that current, especially when the

antenna is over highly conducting ground (e.g., seawater).

Because it is common practice to use the point-dipole approximation, the

following section will begin with results based on Equation (54), followed by

results for linear half-wave antennas, half-wave spiral type antennas, and

finally for a TACAMO configuration.

12
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3.0 RESULTS

Shown in figures 2 through 8 are results, based on Equation (54), along

with the curves

z = (23.9/f kHz)z+ (55)

which are parametric in the frequency, fkHz, expressed in kilohertz. The

individual figures are for inclinations ,y, ranging from vertical (y = 00) to

horizontal (y = 900) at 150 intervals. All of the curves for P/Pz approach a

value of 2 (or 3 d1) for z+>>l. As pointed out previously1 0 , that results

simply from the fact that a dipole in free space radiates one half the energy

of the dipole of the same strength situated vertically and immediately above a

perfectly conducting plane. In the latter configuration, the image source

reinforces the primary source. This gives rise to an effective moment which

is twice the primary, or equivalent to, a radiated power which is four times

that of the primary source in free space. However, the dipole over the

conducting plane radiates only into a hemisphere, and, so, the net effect is

the factor of two quoted above.

When z < 1, the power ratio, P/Pz, increases as y increases. This

occurs because the vertical component decreases and because the radiation

resistance corresponding to the horizontal component decreases (the image

totally negates the primary source for a horizontal dipole immediately above a

perfectly conducting plane).

13
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Figures 9 through 15 show radiation-resistance results for a half-wave

linear antenna of inclinations varying from U° (vertical) to 900 (horizontal)

at 15° intervals. The horizontal axis is the dimensionless ratio of the

altitude of the antennas midpoint (z o ) to wavelength. A sinusoidal current

distribution is assumed, and the radiation resistance is referenced to the

current maxima. The radiation resistance is normalized to the free-space

half-wave dipole value of 73.19 2 .

Figure 9 shows comparisons between the results predicted from Equation

(44) and exact results1 1 for a half-wave vertical dipole (y = 00) over a

perfectly conducting ground. Results of Equation (44) are shown for 2

segments (N = 2), 5 segments (N = 5), and 20 segments (N = 20). Convergence

to the exact result is evident. In particular, the 20-segment calculation

differs from the exact calculation by < I.

Figure 15 shows a comparison between the 20-segment result predicted from

Equation (44) and exact (analytical) results1 1 for a half-wave horizontal

dipole (y = 900 ) over a perfectly conducting plane. Again the results differ

by < I%. As expected, for all orientations the results oscillate and

gradually settle to the value one for z0/X > 1.

As an example of a somewhat more general application of Equation (44),

figures 16 through 33 show results for what has been termed here a half-wave

"spiral dipole." The antenna configuration is described by the parametric

equations

14



x/X= (R /?,)cos[ m (t+1)
0(4R°/K (m21/20 ~O (1+rn2)12

y/ X (R 1X) s [ m t+1 -lti (56)
(4R0 / X) (1+m

2 )1/2

z/X = Z0/k + t

4(1+m2 )
/2

where in = tan Y and Ro is the radius of the spiral. The total rotation angle

of the spiral is

m (57)
2(R/ ) (1+m2 ) 1/2

Again, the current distribution is assumed sinusoidal with the radiation

resistance referenced to the current maxima. Figures 16 through 21 show

results for R /X = 0.1, figures 22 through 27 are for Ro/X = U.2, and figures
00

28 through 33 are for R 0A = U.3. At 30 kHz these values correspond to radii

of 1, 2, and 3 km. Equation (57) shows that the total rotation angle

increases as m increases and varies inversely with Ro -  All of the figures

from 16 through 33 have been generated from Equation (44) using a 20-segment

approximation.

Unlike the half-wavelength linear dipole, the "spiral dipole" curves

approach values for z0 /k > 1, less than the free space values because the

spirdl feature produces a loop like characterisitic to the antenna. The level

approached for z /, > I decreases as the total rotation angle @ increases.0

For the same inclination angle, y , the tighter spiral yields the lower

radiation resistance.

A realistic TACA1IU configuration is considered as the final example.

Table 1 gives the coordinates of the end points of the segments used to model

a b,UUU-foot orbit configuration used by Bickel et al. 1 2

15



Table 1. Antenna coordinates (6,000-foot orbit).

x (km) y (km) z (km)

-0.275 0.0U 1.844
'p

I

- -0.200 -0.175 2.312

-0.689 -0.275 2.937

0.094 -0.350 3.609

0.269 -0.350 4.172

0.469 -0.288 4.750

0.688 -0.125 5.312

0.862 0.181 5.859

0.925 0.575 6.234

0.825 1.000 6.656

U.594 1.425 7.062

0.212 1.737 7.250

0.000 1.862 7.344

0.010 1.862 7.347

0.604 1.750 7.347

Figure 34 shows the radiation resistance calculated from Equation (44)

using both a sinusoidal current distribution and the current distribution

- taken from a NEC program output 13 at 19.8 kHz for the antenna configuration of
- table 1 above a perfectly conducting ground. In this case, z = (zb + zt)12

where zb is the z coordinate of the bottom of the antenna, and zt is the

coordinate of the top of the antenna. For the configuration of table 1, zo =

16
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i

4.595 km and z = 0.303. The results exhibit the same shape but differ by
0

about 3%. Somewhat surprisingly, the NEC current distribution (which has both

in-phase and quadrature components whose ratio slowly varies over the antenna)

yields the higher radiation resistance. That may be due, at least partly, to

the fact that the NEC current output did not include the precise current

maximum (all resistances given here are presumed referenced to the current

maximum). At any rate, the agreement is sufficiently encouraging to warrant

further comparisons with NEC. In particular, the influence of finite wire

diameter, as well as the influence of the finite conductivity of the wire and

ground, should be pursued.

Exclusive of the counterpoise, coordinate extremes of which are given by

the last two row entries in table 1, the total rotation angle, 4 , of the

TACAMO antenna is 3.77 Radians. It is interesting to note that the result for

the spiral antenna for Ro/\ = 0.1, y = 450 (figure 18) corresponds to a total

rotation angle = 3.53 Radians. Though differing in detail, a decided

resemblance exists between the TACAMO result and that of figure 18.

17
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4.0 CONCLUSIONS

A dipole-segmentation formula has been developed for estimating the

radiation resistance of thin antennas of arbitrary elevation and configuration

over a perfectly conducting ground plane. The formula yields good agreement

with the known results for linear-vertical and horizontal half-wave dipoles

over a perfectly conducting ground plane. As an illustration of more general

configurations, results have been given for half-wave spiral type antennas, as

well as for a TACAMO configuration. Preliminary comparison of results for the

latter case, with output from the NEC code, indicates a 3% discrepancy.

Additional comparisons with NEC should be made with particular emphasis on

determining the influence of wire thickness, as well as the influence of the

finite conductivity of the antenna wire and of the ground.

18
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